11.19 Linear Transformation by 姜姜

Section1 Linear Transformation, Kernel and Image, Dimension Thm

Prob.1.1 Let V and W be vector spaces and T: V→W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.

(b) Suppose that T is one-to-one and that S is a subset of V.Prove that S is linearly independent if and only if T(S) is linearly independent.

(c) Suppose $\beta = \{v_1, v_2, ..., v_n\}$ is a basis for V and T is one-to-one and onto. Prove that T(β)={T(v_1), $T(v_2),..., T(v_n)$ is a basis for W.

Def. Let V be a vector space and W₁ and W₂ be subspaces of V such that V=W₁ \oplus W₂. A function T: V \rightarrow V is called the projection on W₁ along W₂ if, for x=x₁+x₂ with x₁ \in W₁ and x₂ \in W₂, we have $T(x)=x_1$.

Prob.1.2 Using the notion in the definition above, assume that T: V \rightarrow V is the projection on W₁ along W_2 .

(a) Prove that T is linear and $W_1 = \{x \in V: T(x)=x\}.$

- (b) Prove that $W_1=Im(T)$ and $W_2=Ker(T)$.
- (c) Describe T if $W_1=V$.
- (d) Describe T if W_1 is the zero subspace.

Prob.1.3 Suppose that W is a subspace of a finite-dimensional vector space V.

(a) Prove that there exists a subspace W' and a function T: V \rightarrow V such that T is a projection on W along W'.

(b) Given an example of a subspace W of a vector space V such that there are two projections on W along two (distinct) subspace.

Prob.1.4 Let V be a finite-dimensional vector space and T: V→V be linear.

(a) Suppose that V=Im(T)+Ker(T). Prove that V=Im(T) \oplus Ker(T).

(b) Suppose that Im(T)∩Ker(T)={0}. Prove that V=Im(T)⊕Ker(T).

Be careful to say in each part where finite-dimensionality is used.

Section2 The Matrix Representation of a Linear Map

Prob.2.1 Let V and W be vector spaces, and let S be a subset of V. Define $S^0 = \{T \in \mathcal{L}(V, W): T(x)=0\}$

for all $x \in S$. Prove the following statements.

(a) S^0 is a subspace of $L(V)$

(a) S⁰ is a subspace of *L*(V, W).
(b) If S₁ and S₂ are subsets of V and S₁⊆S₂, then S₂⁰⊆S₁⁰. .

(c) If V₁ and V₂ are subspaces of V, then $(V_1+V_2)^0=V_1^0\cap V_2^0$.

Prob.2.2 Let V and W be vector spaces such that dim(V)=dim(W),and let T: V→W be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that $[T]β^y$ is a diagonal matrix.

Section3 Composition of Linear Maps and Matrix Multiplication

Prob.3.1 Let A be an m×n matrix and B be an n×p matrix. For each j (1≤j≤p) let u_i and v_i denote the jth columns of AB and B, respectively. (这题小盆友们自己看一下哦, 我不讲啦~

(a) Suppose that z is a (column) vector in F^p . Prove that Bz is a linear combination of the columns of B. In particular, if z=(a₁, a₂,..., a_p)^T, then show that Bz= $\sum_{j=1}^{p} aj \cdot vj$

(b) Extend (a) to prove that column j of AB is a linear combination of the columns of A with the coefficients in the linear combination being the entries of column of B.
(c) For any row vector $w \in F^m$, prove that wA is a linear combination of the rows of A with the

coefficients in the linear combination being the coordinates of w. Hint: Use properties of the transpose operation applied to (a).

(d) Prove the analogous result to (b) about rows: Row i of AB is a linearcombination of the rows of B with the coefficients in the linear combination being the entries of row i of A.

14. Proof. (a) We have

$$
Bz = B(a_1e_1 + \dots + a_pe_p) = a_1Be_1 + \dots + a_pBe_p = a_1v_1 + \dots + a_pv_p.
$$

(b) Applying (a), the column j of AB is

$$
u_j = Av_j = A(b_{1j}e_1 + \dots + b_{nj}e_n) = b_{1j}y_1 + \dots + b_{nj}y_n,
$$

where y_1, \ldots, y_n are the columns of A.

(c) Write $w = (a_1, \ldots, a_m)$. Applying (a) for A^T and w^T , we see that

$$
A^T w^T = a_1 x_1 + \dots + a_m x_m,
$$

where x_1, \ldots, x_m are the columns of A^T . By definition of transpose, x_1^T, \ldots, x_m^T are the rows of A. Taking transpose of the above equation gives that

$$
vA = a_1 x_1^T + \cdots a_m x_m^T,
$$

which is the required assertion.

(d) By (b), column *i* of $(AB)^T = B^T A^T$ is the linear combination of columns of B^T with coefficients being $(A^T)_{1i} = a_{i1}, \ldots, (A^T)_{ni} = a_{in}$. Taking transpose, row *i* of AB is the linear combination of rows of B with coefficients being a_{i1}, \ldots, a_{in} , which is the required assertion.

Prob.3.2 Let V be a finite-dimensional vector space, and let T: V→V be linear.

(a) If rank(T)=rank(T²), prove that Im(T)∩Ker(T)={0}. Deduce that V=Im(T) \oplus Ker(T).

(b) Prove that V=Im(T^k) \oplus Ker(T^k) for some positive integer k.

Prob.3.3 Let V be a vector space. Determine all linear transformations T: V \rightarrow V such that T=T². . Hint: Note that $x=T(x)+(x-T(x))$ for every x in V, and show that $V=\{y:T(y)=y\}\oplus Ker(T)$.

Section4 Invertibility and Isomorphism

Prob.4.1 Let V and W be n-dimensional vectorspaces, and let T: V→W be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if T(β)is a basis for W.

Prob.4.2 Let V and W be finite-dimensional vector spaces and T: V \rightarrow W be an isomorphism. Let V₀ be a subspace of V.

- (a) Prove that $T(V_0)$ is a subspace of W.
- (b) Prove that dim(V_0)=dim(T(V_0)).

Prob.4.3 Let T: V→W be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Let β and γ be ordered bases for V and W, respectively. Prove that rank(T)=rank(L_A) and dimKer(T)=dimKer(L_A), where A=[T]_β^γ. .

Thm Let V and W be vector spaces over F,and suppose that $\{v_1, v_2, ..., v_n\}$ is a basis for V. For w_1 , $w_2,..., w_m$ in W, there exists exactly one linear transformation T: V \rightarrow W such that T(v_i)=w_i for i=1,2,…, n.

Prob.4.4 Let V and W be finite-dimensional vector spaces with ordered bases $\beta = \{v_1, v_2, ..., v_n\}$ and γ={w1, w2,…, wm}, respectively. By thm, there exist linear transformations T**ij**: V→W such that T**ij**(vk)

 $=\begin{cases} Wl & l \neq k = j \\ 0 & i \neq l_1 + i \end{cases}$ 0 if $k \neq j$

First prove that {T**ij**: 1≤i≤m, 1≤j≤n} is a basis for L(V, W). Then let Mij be the m×n matrix with 1 in the ith row and jth column and 0 elsewhere, and prove that [T_{ij}]_β^γ=M^{ij}.Again by thm, there exists a linear transformation Φ: L(V, W)→Mm×n(F) such that Φ(T**ij**)=Mij. Prove that Φ is an isomorphism. Hint: you may use Prob4.1.