11.19 Linear Transformation **by ##**

Section1 Linear Transformation, Kernel and Image, Dimension Thm

Prob.1.1 Let V and W be vector spaces and T: $V \rightarrow W$ be linear.

(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.

(b) Suppose that T is one-to-one and that S is a subset of V. Prove that S is linearly independent if and only if T(S) is linearly independent.

(c) Suppose $\beta = \{v_1, v_2, ..., v_n\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta) = \{T(v_1), T(v_2), ..., T(v_n)\}$ is a basis for W.

Def. Let V be a vector space and W₁ and W₂ be subspaces of V such that $V=W_1 \oplus W_2$. A function T: V \rightarrow V is called the projection on W₁ along W₂ if, for $x=x_1+x_2$ with $x_1 \in W_1$ and $x_2 \in W_2$, we have T(x)=x₁.

Prob.1.2 Using the notion in the definition above, assume that T: $V \rightarrow V$ is the projection on W_1 along W_2 .

(a) Prove that T is linear and $W_1 = \{x \in V: T(x) = x\}$.

- (b) Prove that $W_1=Im(T)$ and $W_2=Ker(T)$.
- (c) Describe T if W₁=V.
- (d) Describe T if W_1 is the zero subspace.

Prob.1.3 Suppose that W is a subspace of a finite-dimensional vector space V.

(a) Prove that there exists a subspace W' and a function T: $V \rightarrow V$ such that T is a projection on W along W'.

(b) Given an example of a subspace W of a vector space V such that there are two projections on W along two (distinct) subspace.

Prob.1.4 Let V be a finite-dimensional vector space and T: $V \rightarrow V$ be linear.

(a) Suppose that V=Im(T)+Ker(T). Prove that V=Im(T) \oplus Ker(T).

(b) Suppose that $Im(T) \cap Ker(T) = \{0\}$. Prove that $V = Im(T) \oplus Ker(T)$.

Be careful to say in each part where finite-dimensionality is used.

Section2 The Matrix Representation of a Linear Map

Prob.2.1 Let V and W be vector spaces, and let S be a subset of V. Define $S^0=\{T \in \mathcal{L}(V, W): T(x)=0 \text{ for all } x \in S\}$. Prove the following statements.

(a) S^0 is a subspace of $\mathcal{L}(V, W)$.

(b) If S_1 and S_2 are subsets of V and $S_1 \subseteq S_2$, then $S_2^0 \subseteq S_1^0$.

(c) If V_1 and V_2 are subspaces of V, then $(V_1+V_2)^0=V_1^0\cap V_2^0$.

Prob.2.2 Let V and W be vector spaces such that dim(V)=dim(W), and let T: V \rightarrow W be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that $[T]_{\beta}^{\gamma}$ is a diagonal matrix.

Section3 Composition of Linear Maps and Matrix Multiplication

Prob.3.1 Let A be an m×n matrix and B be an n×p matrix. For each j $(1 \le j \le p)$ let u_j and v_j denote the jth columns of AB and B, respectively. (这题小盆友们自己看一下哦,我不讲啦~

(a) Suppose that z is a (column) vector in F^p . Prove that Bz is a linear combination of the columns of B. In particular, if $z=(a_1, a_2, ..., a_p)^T$, then show that $Bz = \sum_{i=1}^p a_j \cdot v_i$

(b) Extend (a) to prove that column j of AB is a linear combination of the columns of A with the coefficients in the linear combination being the entries of column of B.

(c) For any row vector $w \in F^m$, prove that wA is a linear combination of the rows of A with the coefficients in the linear combination being the coordinates of w. Hint: Use properties of the transpose operation applied to (a).

(d) Prove the analogous result to (b) about rows: Row i of AB is a linear combination of the rows of B with the coefficients in the linear combination being the entries of row i of A.

14. Proof. (a) We have

$$Bz = B(a_1e_1 + \dots + a_pe_p) = a_1Be_1 + \dots + a_pBe_p = a_1v_1 + \dots + a_pv_p.$$

(b) Applying (a), the column j of AB is

$$u_{i} = Av_{i} = A(b_{1i}e_{1} + \dots + b_{ni}e_{n}) = b_{1i}y_{1} + \dots + b_{ni}y_{n},$$

where y_1, \ldots, y_n are the columns of A.

(c) Write $w = (a_1, \ldots, a_m)$. Applying (a) for A^T and w^T , we see that

$$A^T w^T = a_1 x_1 + \dots + a_m x_m,$$

where x_1, \ldots, x_m are the columns of A^T . By definition of transpose, x_1^T, \ldots, x_m^T are the rows of A. Taking transpose of the above equation gives that

$$vA = a_1 x_1^T + \cdots + a_m x_m^T,$$

which is the required assertion.

(d) By (b), column *i* of $(AB)^T = B^T A^T$ is the linear combination of columns of B^T with coefficients being $(A^T)_{1i} = a_{i1}, \ldots, (A^T)_{ni} = a_{in}$. Taking transpose, row *i* of AB is the linear combination of rows of *B* with coefficients being a_{i1}, \ldots, a_{in} , which is the required assertion.

Prob.3.2 Let V be a finite-dimensional vector space, and let T: $V \rightarrow V$ be linear.

(a) If rank(T)=rank(T²), prove that $Im(T) \cap Ker(T)=\{0\}$. Deduce that $V=Im(T) \oplus Ker(T)$.

(b) Prove that $V=Im(T^k) \oplus Ker(T^k)$ for some positive integer k.

Prob.3.3 Let V be a vector space. Determine all linear transformations T: $V \rightarrow V$ such that $T=T^2$. Hint: Note that x=T(x)+(x-T(x)) for every x in V, and show that $V=\{y:T(y)=y\} \oplus Ker(T)$.

Section4 Invertibility and Isomorphism

Prob.4.1 Let V and W be n-dimensional vectorspaces, and let T: V \rightarrow W be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if T(β)is a basis for W.

Prob.4.2 Let V and W be finite-dimensional vector spaces and T: $V \rightarrow W$ be an isomorphism. Let V_0 be a subspace of V.

- (a) Prove that $T(V_0)$ is a subspace of W.
- (b) Prove that dim(V₀)=dim(T(V₀)).

Prob.4.3 Let T: $V \rightarrow W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Let β and γ be ordered bases for V and W, respectively. Prove that rank(T)=rank(L_A) and dimKer(T)=dimKer(L_A), where A=[T]_{β}^{γ}.

Thm Let V and W be vector spaces over F,and suppose that $\{v_1, v_2, ..., v_n\}$ is a basis for V. For w_1 , w_2 ,..., w_m in W, there exists exactly one linear transformation T: V \rightarrow W such that $T(v_i)=w_i$ for i=1,2,..., n.

Prob.4.4 Let V and W be finite-dimensional vector spaces with ordered bases $\beta = \{v_1, v_2, ..., v_n\}$ and $\gamma = \{w_1, w_2, ..., w_m\}$, respectively. By thm, there exist linear transformations $T_{ij}: V \rightarrow W$ such that $T_{ij}(vk)$

$$=\begin{cases} wi & if \ k = j \\ 0 & if \ k \neq j \end{cases}$$

First prove that $\{T_{ij}: 1 \le i \le m, 1 \le j \le n\}$ is a basis for L(V, W). Then let M^{ij} be the m×n matrix with 1 in the ith row and jth column and 0 elsewhere, and prove that $[T_{ij}]_{\beta}{}^{\nu}=M^{ij}$. Again by thm, there exists a linear transformation Φ : L(V, W) $\rightarrow M_{m\times n}(F)$ such that $\Phi(T_{ij})=M^{ij}$. Prove that Φ is an isomorphism. Hint: you may use Prob4.1.