连续函数应用与一致连续

图灵 2402 郭名扬

2025年11月13日

目录

1	函数的连续性	2
	1.1 连续的相关概念	2
	1.2 函数连续性的性质	2
	1.3 闭区间上的连续函数	3
	1.4 一致连续	3
2	连续性专题习题	4
3	一些总结和理解	5

1 函数的连续性 2

1 函数的连续性

1.1 连续的相关概念

定义 1.1 (函数在单点处的连续性). 若函数 f 在 x_0 的某邻域上有定义,并且满足 $\lim_{x\to x_0} f(x) = f(x_0)$,则称函数 f 在 x_0 处连续

可以看出连续性实际上是函数极限和函数值之间的相等关系,同样地,根据左右极限和函数值 之间的关系,我们也可以定义左连续和右连续。

函数连续的定义实际上至少包含了三个层面的内容: f 在 x_0 处有定义; $\lim_{x\to x_0} f(x)$ 存在; $\lim_{x\to x_0} f(x) = f(x_0)$

根据这三个层面的内容,我们可以引出下面几种间断点的定义:

- 可去间断点: 若 $\lim_{x\to x_0} f(x) = A$,但 $f(x_0)$ 无定义或 $f(x_0) \neq A$
- 跳跃间断点: 若函数 f 在 x_0 处的左右极限都存在, 但 $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$
- 第二类间断点: 使得函数至少有一侧极限不存在的点

可去间断点和跳跃间断点统称为第一类间断点。对于间断点的理解,最直观的还是借助图像的形式。可去间断点顾名思义,我们可以更改 $f(x_0)$ 这一点处的取值,使 x_0 处变成连续的;而跳跃间断点则把函数分成左右两个部分,这两个部分之间有一个"高度差"。

例题 1.2. (24-25 秋冬第一次小测)设 $f(x) = \lim_{n \to +\infty} \frac{1+x}{1+x^{2n}}$,则 f(x)()

- A. 有间断点 x = -1
- B. 有间断点 x=1
- C. 有间断点 x=0
- D. 无间断点

例题 1.3. (24-25 秋冬第一次小测) 设函数 $f(x) = \frac{\ln(1+x^2)}{a-e^{bx}}$, 其中 a,b 为实常数, f(x) 在 $(-\infty,+\infty)$ 上连续,且 $\lim_{x\to+\infty} f(x) = 0$,则有()

- A. $a \leq 0$
- B. a > 0
- C. $b \leq 0$
- D. b > 0

例题 1.4. (23-24 秋冬第一次小测) 设 a,b 是两个实常数,已知 x=1 是函数 $f(x)=\frac{e^x-b}{(x-a)(x-b)}$ 的可去间断点,求 a,b 的值

1.2 函数连续性的性质

函数连续性的性质大多数都基于函数极限的性质,只不过把我们在极限部分并不关注的 $f(x_0)$ 的值给补上了而已,大家可以根据极限去理解。

- 局部有界性: 若 f 在 x_0 处连续,则 f 在 x_0 的某邻域 $U(x_0)$ 上有界
- 局部保号性: 若 f 在 x_0 处连续,且 $f(x_0) > 0$,则 $\forall r > 0$, $\exists U(x_0), \forall x \in U(x_0), f(x) > r$

1 函数的连续性 3

- 四则运算性质
- 复合函数的连续性: 若 f 在 x_0 处连续,且 g 在 $f(x_0)$ 处连续,则 $g \circ f$ 在 x_0 处连续

有了复合函数的连续性和四则运算性质,我们可以下这样的结论:一切初等函数在其定义区间上连续。这样我们就可以做一个极限符号的转移 $\lim_{x\to x_0} f(x) = f(\lim_{x\to x_0} x) = f(x_0)$,来方便我们的极限计算。

例题 1.5. (24-25 秋冬第一次小测)设 f,g 在 R 上有定义,且 $f \circ g,g \circ f$ 也在 R 上有定义。已知 f 连续且 $\forall x \in R, f(x) \neq 0, g(x)$ 有间断点,则下列函数中可能连续的有 ()

- A. $f \circ g(x)$
- B. $(g(x))^2$
- C. $g \circ f(x)$
- D. $\frac{g(x)}{f(x)}$

1.3 闭区间上的连续函数

闭区间上连续函数的性质在后续的许多证明题当中都会用到,其性质的证明方法和证明思想也会被频繁使用。因此这一块的学习是很重要的,无论是性质还是证明方法都有必要熟练掌握。大家在后续进一步学习实数完备性定理之后,也可以尝试使用各个定理来证明下面的性质。

- 有界性: 若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上有界
- 最大最小值: 若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上有最大值和最小值
- 介值定理: 若 f(x) 在 [a,b] 上连续,最大值为 M,最小值为 m,则 $\forall c \in [m,M], \exists x_0 \in [a,b], f(x_0) = c$

例题 1.6. 函数 f 在 (a,b) 内连续, $a < x_1 < x_2 < \cdots < x_n < b$,证明:在 (a,b) 内存在点 ξ ,满足 $f(\xi) = \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n}$

例题 1.7. 判断下面命题真伪: 若函数 f 在 (a,b) 内连续且有界,则 $\lim_{x\to a^+} f(x), \lim_{x\to b^-} f(x)$ 均存在

1.4 一致连续

一致连续是一个比连续更强的性质,而且在数分二当中我们也会经常涉及到一致连续的概念,每年数分一期末都会有一道题涉及到一致连续,这一块的学习也是很重要的。

定义 1.8 (一致连续). 设 f 为定义在区间 I 上的函数. 我们称 f 在 I 上一致连续, 如果 $\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0, \forall x', x'' \in I, |x' - x''| < \delta, |f(x') - f(x'')| < \varepsilon$

其实第一眼看到一致连续的定义是有点让人摸不着头脑的,乍一看它好像和连续没什么关系。 为了更深入的理解一致连续的概念,大家可以做以下几个事情:

- 如果一个函数 f 在区间 I 上是一致连续的,如何说明它是连续的
- 函数 $f(x) = \frac{1}{x}$ 在 $(0, +\infty)$ 上是不是一致连续的

2 连续性专题习题 4

• 函数 $f(x) = \frac{1}{x}$ 在 $(1, +\infty)$ 上是不是一致连续的

理解一致连续的关键点在于如何理解一致连续当中的"一致",大家后续在数分二当中还会看到很多和"一致"有关的东西,比如一致收敛、一致有界。他们都表示后续的性质对于某个变量均成立,也就是并不依赖于这个变量。这里就涉及到一开始在数列极限的 $\varepsilon-N$ 定义当中和大家强调的对于 \forall 的理解。

如果我们写出函数 f 在 I 上连续的表达: $\forall x_0 \in I, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), |f(x) - f(x_0)| < \varepsilon$ 。这里的 δ 实际上是依赖于 x_0, ε 的。而一致连续的表达则是: $\forall \varepsilon > 0, \exists \delta > 0, \forall x_0 \in I, \forall x \in \mathring{U}(x_0, \delta), |f(x) - f(x_0)| < \varepsilon$ 。这里的 δ 实际上只依赖于 ε 的,它对于后续的 x_0 是"一致"成立的。从 这里也能看出一致连续要比连续来的更强。

每次都通过定义去证明一个函数是否一致连续是十分费力的,我们给出下面几个结论,可以帮助我们快速证明函数的一致连续性:

定理 1.9. 函数 f 在区间 I 上一致连续的充要条件是:对任意 I 上对数列 $\{x_n\}, \{y_n\}, \ddot{z} \lim_{n \to +\infty} (x_n - y_n) = 0$,则 $\lim_{n \to +\infty} (f(x_n) - f(y_n)) = 0$

定理 1.10 (Cantor 定理). 若函数 f 在闭区间上连续,则其在该区间上一致连续

定理 1.11. 若函数 f 在 (a,b) 上连续,则其在该区间上一致连续的充要条件为: $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 均存在

例题 1.12. (23-24 秋冬第一次小测) 下列命题正确的有()

- A. 若函数 f,g 在 R 上连续,则 $f \cdot g$ 在 R 上连续
- B. 若函数 f,g 在 (0,1) 上一致连续,则 $f \cdot g$ 在 (0,1) 上一致连续
- C. 若函数 f,g 在 R 上一致连续,则 $f \cdot g$ 在 R 上一致连续
- D. 若函数 f,g 在 R 上一致连续,则 f+g 在 R 上一致连续

例题 1.13. 若 f 在 $[a, +\infty)$ 上连续,且 $\lim_{x\to +\infty} f(x)$ 存在,证明: f 在 $[a, +\infty)$ 上一致连续

2 连续性专题习题

例题 2.1. (2021 秋冬期末) 证明: 如果 f(x) 在 $[0,+\infty)$ 上一致连续, g(x) 在 $[0,+\infty)$ 连续, 且 $\lim_{x\to+\infty}(f(x)-g(x))=0$, 则 g(x) 在 $[0,+\infty)$ 上一致连续

例题 2.2. (2022 秋冬期末) 证明: $f(x) = x^{\frac{1}{2023}}$ 在 $[0, +\infty)$ 上一致连续

例题 2.3. (2024 秋冬期末) 证明: $f(x) = \sqrt{x \ln x}$ 在 $(0, +\infty)$ 上一致连续

例题 2.4. (2024 秋冬期末) 使用确界原理证明:定义在 (0,1) 上的单增函数的间断点只能是跳跃间断点

例题 2.5. (2022 秋冬期末) 已知连续的非常值函数 f(x) 满足 $\lim_{x\to +\infty} f(x) = f(0)$,证明 f(x) 在 $[0,+\infty)$ 上有最大值或最小值

例题 2.6. 证明: 非常数的连续周期函数,必有最小正周期

例题 2.7. 证明: 若函数 f(x) 在 [0,1] 上连续, f(0) = f(1), 则对任何自然数 $n \ge 2$, 存在 $\xi_n \in [0,1]$, 使得 $f(\xi_n + \frac{1}{n}) = f(\xi_n)$

3 一些总结和理解 5

例题 2.8. 证明: 若函数 f(x) 在区间 I 上处处连续且为一一映射,则 f(x) 在 I 上必定严格单调 **例题 2.9.** 设 f(x) 在 $(a, +\infty)$ 内连续且有界,试证明: $\forall T \in R, \exists x_n \to +\infty$,使得 $\lim_{n \to +\infty} (f(x_n + T) - f(x_n)) = 0$

3 一些总结和理解

本讲义的内容仅局限在一致连续及其之前的内容,但是实际上,连续作为函数的一个很好的性质,在后续的章节当中也会作为条件频繁地出现。

如果仅看局限在一致连续及其之前的内容,有关函数连续性的应用,很多都基于某个函数在一个区间上的"形态"。通过一些条件的拘束,我们可以明确这个函数的"形态"。题目对于我们的要求,就需要我们把"几何直观"严谨地证明出来。

考试对于一致连续的要求基本上都基于两个方面,一个是根据某些条件,去证明一个抽象函数 是一致连续的,另一个是给出一个具体函数,来证明其是一致连续的。这两个方面在上面的题目当 中也有很多,其中证明的思路大多都是类似的。